
BASSMOD_ErrorGetCode

Retrieves the BASSMOD error code for the most recent BASSMOD function call.

Return value
If no error occured during the last BASSMOD function call then BASS_OK is returned, else one of the BASS_ERROR
values is returned. See the function description for an explanation of what the error code means.

DWORD WINAPI BASSMOD_ErrorGetCode();

BASSMOD_Free

Frees all resources used by the digital output, including the MOD music.

Remarks
BASSMOD_Free should be called before your program exits. It's not necessary to individually free the MOD music as it is
automatically freed by this function.

If you wish to change device settings, having already called BASSMOD_Init, then BASSMOD_Free must be called before
calling BASSMOD_Init again. You will also have to reload the MOD music.

See also
BASSMOD_Init

void WINAPI BASSMOD_Free();

BASSMOD_GetCPU

Retrieves the current CPU usage of BASSMOD.

Return value
The BASSMOD CPU usage as a percentage of total CPU time.

float WINAPI BASSMOD_GetCPU();

BASSMOD_GetDeviceDescription

Retrieves the text description of a device.

Parameters

Return value
If succesful, then a pointer to the description is returned, else NULL is returned. Use BASSMOD_ErrorGetCode to get the
error code.

Error codes

Remarks
This function can be used to enumerate the available devices for a setup dialog.

Example
To get the total number of devices present.

char *WINAPI BASSMOD_GetDeviceDescription(
 int devnum
);

devnum The device to get the description of... 0 = first.

BASS_ERROR_DEVICE The device number specified is invalid.

Linux notes
This function will always return NULL in the Linux version.

int count=0; // the device counter
while (BASSMOD_GetDeviceDescription(count)) count++;

BASSMOD_GetVersion

Retrieves the version number of the BASSMOD.DLL that is loaded.

Return value
The BASSMOD version (LOWORD.HIWORD)

Remarks
There is no guarantee that a previous or future version of BASSMOD supports all the BASSMOD functions that you are
using, so you should always call this function to make sure the correct version is loaded.

Example
To check that BASSMOD 2.0 is loaded.

DWORD WINAPI BASSMOD_GetVersion();

if (BASSMOD_GetVersion()!=MAKELONG(2,0)) {
 // version 2.0 not loaded!
}

BASSMOD_GetVolume

Retrieves the current volume level.

Return value
If successful, the volume level is returned, else -1 is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

See also
BASSMOD_SetVolume

int WINAPI BASSMOD_GetVolume();

BASS_ERROR_INIT BASSMOD_Init has not been successfully called. This error is also returned when trying to get
the volume level of the "no sound" or "decode only" device.

BASS_ERROR_DRIVER
Linux only

BASSMOD could not get access to the mixer.

BASSMOD_Init

Initializes BASSMOD.

Parameters

Return value
If BASSMOD was successfully initialized then TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode
to get the error code.

Error codes

Remarks
This function must be successfully called before calling any other BASSMOD functions, except
BASSMOD_ErrorGetCode, BASSMOD_GetDeviceDescription and BASSMOD_GetVersion.

When using the "decode only" device (device = -3), BASSMOD only decodes the sample data (via
BASSMOD_MusicDecode), without playing it. This allows the data to be outputted in any way wanted, for example,
writing to disk. As no playback (and therefore syncing too) is performed, no decoding or syncing threads are created
when using this "device".

Example
To initialize BASSMOD, falling back to no sound if no device is available.

See also
BASSMOD_Free, BASSMOD_MusicLoad, BASSMOD_SetVolume

BOOL WINAPI BASSMOD_Init(
 int device,
 DWORD freq,
 DWORD flags
);

device The device to use... 0 = first, -1 = default, -2 = no sound, -3 = decode only (see remarks).
BASSMOD_GetDeviceDescription can be used to get the total number of devices.

freq Output sample rate.
flags Any combination of these flags.

BASS_DEVICE_8BITS Use 8 bit resolution, else 16 bit.
BASS_DEVICE_MONO Use mono, else stereo.
BASS_DEVICE_NOSYNC Disable synchronizers. If you are not using any syncs, then you may as well use

this flag to save a little CPU time. This is automatic when using the "decode only"
device.

BASS_ERROR_ALREADY BASSMOD has already been initialized. You must call BASSMOD_Free before calling this
function again.

BASS_ERROR_DEVICE The device number specified is invalid.
BASS_ERROR_DRIVER There is no available device driver... the device may already be in use.
BASS_ERROR_FORMAT The specified format is not supported by the device. Try changing the freq and flags

parameters.
BASS_ERROR_MEM There is insufficent memory.

Linux notes
device -1 = "/dev/dsp", device 0 = "/dev/dsp0", device 1 = "/dev/dsp1", etc...

// try initializing the default device, at 44100hz stereo 16 bits
if (!BASSMOD_Init(-1,44100,0)) {
 // couldn't initialize device, so use no sound
 BASSMOD_Init(-2,44100,0)
}

BASSMOD_SetVolume

Sets the digital output master volume.

Parameters

Return value
If succesful, then TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

See also
BASSMOD_GetVolume, BASSMOD_MusicSetVolume

BOOL WINAPI BASSMOD_SetVolume(
 DWORD volume
);

volume The volume level... 0 (min) - 100 (max).

BASS_ERROR_INIT BASSMOD_Init has not been successfully called. This error is also returned when trying to set
the volume level of the "no sound" or "decode only" device.

BASS_ERROR_DRIVER
Linux only

BASSMOD could not get access to the mixer.

BASSMOD_MusicDecode

Gets decoded sample data from the MOD music.

Parameters

Return value
If an error occurs, -1 is returned, use BASSMOD_ErrorGetCode to get the error code. If successful, the number of bytes
actually decoded will be returned.

Error codes

Remarks
The returned sample data is in the standard Windows PCM format: 8-bit samples are unsigned, 16-bit samples are
signed. There are no intermediate buffers involved, so as much data as is available can be decoded in one go.

Example
Decode 10000 bytes of sample data.

See also
BASSMOD_MusicIsActive

DWORD WINAPI BASSMOD_MusicDecode(
 void *buffer,
 DWORD length
);

buffer Location to write the decoded data.
length Number of bytes wanted.

BASS_ERROR_NOMUSIC A MOD music has not been loaded.
BASS_ERROR_NOTAVAIL The "decode only" device was not specified in the BASSMOD_Init call.
BASS_ERROR_NOPLAY The MOD music has reached the end.

BYTE buf[10000]; // buffer
BASSMOD_MusicDecode(buf,10000);

BASSMOD_MusicFree

Frees the MOD music's resources.

See also
BASSMOD_MusicLoad

void WINAPI BASSMOD_MusicFree();

BASSMOD_MusicGetLength

Retrieves the length of the MOD music.

Parameters

Return value
If succesful, then the music's length is returned, else -1 is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Example
To start playback of the MOD music from the beginning of the last order.

See also
BASSMOD_MusicSetPosition, BASSMOD_MusicPlayEx

DWORD WINAPI BASSMOD_MusicGetLength(
 BOOL playlen
);

playlen The length to retrieve... TRUE = the playback length (in bytes), FALSE = the order length.

BASS_ERROR_NOMUSIC A MOD music has not been loaded.
BASS_ERROR_ILLPARAM The BASS_MUSIC_CALCLEN flag was not used with BASSMOD_MusicLoad, or the

playback length could not be calculated (the music does not end).

DWORD len=BASSMOD_MusicGetLength(FALSE); // get length
BASSMOD_MusicPlayEx(MAKELONG(len-1,0),-1,TRUE); // play

BASSMOD_MusicGetName

Retrieves the MOD music's name.

Return value
If succesful, then a pointer to the music's name is returned, else NULL is returned. Use BASSMOD_ErrorGetCode to get
the error code.

Error codes

char *WINAPI BASSMOD_MusicGetName();

BASS_ERROR_NOMUSIC A MOD music has not been loaded.

BASSMOD_MusicGetPosition

Retrieves the playback position of the MOD music.

Return value
If an error occurs, -1 is returned, use BASSMOD_ErrorGetCode to get the error code. If successful, the position is
returned as follows... LOWORD = order, HIWORD = row * scaler (see BASSMOD_MusicSetPositionScaler).

Error codes

See also
BASSMOD_MusicIsActive, BASSMOD_MusicSetPosition

DWORD WINAPI BASSMOD_MusicGetPosition();

BASS_ERROR_NOMUSIC A MOD music has not been loaded.

BASSMOD_MusicGetVolume

Retrieves the volume level of a channel or instrument in a MOD music.

Parameters

Return value
If succesful, then the requested volume level is returned, else -1 is returned. Use BASSMOD_ErrorGetCode to get the
error code.

Error codes

Remarks
This function can also be used to count the number of channels and instruments in a MOD Music.

Example
Count the number of channels and instruments in a MOD music.

See also
BASSMOD_MusicSetVolume

DWORD WINAPI BASSMOD_MusicGetVolume(
 DWORD chanins
);

chanins The channel or instrument to retrieve the volume of... if the HIWORD is 0, then the LOWORD is a channel
number (0 = 1st channel), else the LOWORD is an instrument number (0 = 1st instument).

BASS_ERROR_NOMUSIC A MOD music has not been loaded.
BASS_ERROR_NOTAVAIL chanins is not valid.

int channels=0,instruments=0;
while (BASSMOD_MusicGetVolume(channels)!=-1) channels++;
while (BASSMOD_MusicGetVolume(MAKELONG(instruments,1))!=-1) instruments++;

BASSMOD_MusicIsActive

Checks if the MOD music is active (playing).

Return value
The return value is one of the folowing.

Remarks
When using the "decode only" device, BASS_ACTIVE_PLAYING will be returned until the end of the MOD music is
reached, when BASS_ACTIVE_STOPPED will be returned.

DWORD WINAPI BASSMOD_MusicIsActive();

BASS_ACTIVE_STOPPED The MOD music is not active.
BASS_ACTIVE_PLAYING The MOD music is playing.
BASS_ACTIVE_PAUSED The MOD music is paused.

BASSMOD_MusicLoad

Loads a MOD music.

Parameters

Return value
If successful, then TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
BASS uses the same code as XMPlay for it's MOD music support, giving the most accurate reproduction of IT / XM /
S3M / MTM / MOD / UMX files available from any sound system.

Ramping doesn't take a lot of extra processing and improves the sound quality by removing "clicks". Sensitive ramping
leaves sharp attacked samples, while normal ramping can cause them to lose a bit of their impact. Generally, normal
ramping is recommended for XMs, and sensitive ramping for the other formats. But, some XMs may also sound better
using sensitive ramping.

BOOL WINAPI BASSMOD_MusicLoad(
 BOOL mem,
 void *file,
 DWORD offset,
 DWORD length,
 DWORD flags
);

mem TRUE = load the MOD music from memory.
file Filename (mem = FALSE) or a memory location (mem = TRUE).
offset File offset to load the MOD music from (only used if mem = FALSE).
length Data length (only used if mem = FALSE)... 0 = use all data up to the end of file. If length over-runs the end of

the file, it'll automatically be lowered to the end of the file.
flags A combination of these flags.

BASS_MUSIC_LOOP Loop the music.
BASS_MUSIC_RAMP Use "normal" ramping (as used in FastTracker 2).
BASS_MUSIC_RAMPS Use "sensitive" ramping.
BASS_MUSIC_NONINTER Use non-interpolated mixing. This generally reduces the sound quality, but can

be good for chip-tunes.
BASS_MUSIC_FT2MOD Play .MOD file as FastTracker 2 would.
BASS_MUSIC_PT1MOD Play .MOD file as ProTracker 1 would.
BASS_MUSIC_POSRESET Stop all notes when moving position (using BASSMOD_MusicSetPosition or

BASSMOD_MusicPlayEx).
BASS_MUSIC_SURROUND Apply XMPlay's surround sound to the music (ignored in mono).
BASS_MUSIC_SURROUND2 Apply XMPlay's surround sound mode 2 to the music (ignored in mono).
BASS_MUSIC_STOPBACK Stop the music when a backward jump effect is played. This stops musics that

never reach the end from going into endless loops. Some MOD musics are
designed to jump all over the place, so this flag would cause those to be stopped
prematurely. If this flag is used together with the BASS_MUSIC_LOOP flag, then
the music would not be stopped but any BASS_SYNC_END sync would be
called.

BASS_MUSIC_CALCLEN Calculate the playback length of the music. This also slightly increases the time
taken to load the music, depending on how long it is. Use
BASSMOD_MusicGetLength to retrieve the calculated length. Note that it's not
always possible to calculate a length because some musics never actually reach
an end.

BASS_MUSIC_NOSAMPLE Don't load the music's samples. This slightly reduces the time taken to load the
music, which is useful if you just want to get the name and length of the music
without playing it.

BASS_UNICODE
Win32 only

file is a Unicode (16-bit characters) filename.

BASS_ERROR_INIT BASSMOD_Init has not been successfully called.
BASS_ERROR_ALREADY A MOD music has already been loaded, you must call BASSMOD_MusicFree first.
BASS_ERROR_FILEOPEN The file could not be opened.
BASS_ERROR_FILEFORM The file's format is not recognised/supported.
BASS_ERROR_MEM There is insufficent memory.

When loading a MOD music from memory, BASS does not use the memory after it's loaded the MOD music. So you can
do whatever you want with the memory after calling this function.

See also
BASSMOD_MusicDecode, BASSMOD_MusicFree, BASSMOD_MusicGetLength, BASSMOD_MusicGetName,
BASSMOD_MusicPlay, BASSMOD_MusicPlayEx, BASSMOD_MusicSetAmplify, BASSMOD_MusicSetPanSep,
BASSMOD_MusicSetPositionScaler, BASSMOD_MusicSetSync

PocketPC notes
All filenames are Unicode on PocketPC, so file is always Unicode (if not loading from memory).

BASSMOD_MusicPause

Pauses the MOD music.

Return value
If successful, TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
Use BASSMOD_MusicPlay to resume playback. BASSMOD_MusicStop can be used to stop the paused MOD music.

See also
BASSMOD_MusicPlay, BASSMOD_MusicStop

BOOL WINAPI BASSMOD_MusicPause();

BASS_ERROR_NOPLAY The MOD music is not playing.

Linux notes
Pausing is not instantaneous in the Linux version.

BASSMOD_MusicPlay

Plays the MOD music.

Return value
If successful, TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
Playback continues from where it was last stopped or paused. If the MOD music has just been loaded, then playback
starts from the beginning.

See also
BASSMOD_MusicGetPosition, BASSMOD_MusicIsActive, BASSMOD_MusicPause, BASSMOD_MusicStop,
BASSMOD_MusicLoad, BASSMOD_MusicPlayEx

BOOL WINAPI BASSMOD_MusicPlay();

BASS_ERROR_NOMUSIC A MOD music has not been loaded.

BASSMOD_MusicPlayEx

Plays the MOD music, using the specified start position and flags.

Parameters

Return value
If successful, TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
When the position is left unchanged (pos = -1), this function does not start the music playing, but it will continue playing if
it is already. This allows a music's flags (ramping, etc...) to be changed at any time.

Example
To reset and start playback of the MOD music at row 10 of order 5.

See also
BASSMOD_MusicGetPosition, BASSMOD_MusicIsActive, BASSMOD_MusicPause, BASSMOD_MusicStop,
BASSMOD_MusicGetLength, BASSMOD_MusicLoad, BASSMOD_MusicPlay

BOOL WINAPI BASSMOD_MusicPlayEx(
 DWORD pos,
 int flags,
 BOOL reset
);

pos Position to start playback from... LOWORD = order, HIWORD = row. If HIWORD = 0xFFFF, then LOWORD =
position in seconds. If LOWORD and HIWORD are both 0xFFFF, then the position is left unchanged. Setting
the position in seconds requires that the BASS_MUSIC_CALCLEN flag was used when the MOD music was
loaded.

flags Override the MOD music's current flags... -1 = use current flags, else a combination of these flags.
BASS_MUSIC_LOOP Loop the music.
BASS_MUSIC_RAMP Use "normal" ramping (as used in FastTracker 2).
BASS_MUSIC_RAMPS Use "sensitive" ramping.
BASS_MUSIC_NONINTER Use non-interpolated mixing. This generally reduces the sound quality, but can

be good for chip-tunes.
BASS_MUSIC_FT2MOD Play .MOD file as FastTracker 2 would.
BASS_MUSIC_PT1MOD Play .MOD file as ProTracker 1 would.
BASS_MUSIC_POSRESET Stop all notes when moving position (using BASSMOD_MusicSetPosition or this

function).
BASS_MUSIC_SURROUND Apply XMPlay's surround sound to the music (ignored in mono).
BASS_MUSIC_SURROUND2 Apply XMPlay's surround sound mode 2 to the music (ignored in mono).
BASS_MUSIC_STOPBACK Stop the music when a backward jump effect is played. This stops musics that

never reach the end from going into endless loops. Some MOD musics are
designed to jump all over the place, so this flag would cause those to be stopped
prematurely.

reset TRUE = Stop all playing notes and reset BPM, etc... This is ignored if not also setting the position.

BASS_ERROR_NOMUSIC A MOD music has not been loaded.
BASS_ERROR_DECODE The "decode only" device is being used, so the MOD music is not playable (pos must be -

1).
BASS_ERROR_POSITION pos is invalid.

BASSMOD_MusicPlayEx(MAKELONG(5,10),-1,TRUE);

BASSMOD_MusicRemoveSync

Removes a synchronizer from the MOD music.

Parameters

Return value
If succesful, TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

See also
BASSMOD_MusicSetSync, SYNCPROC callback

BOOL WINAPI BASSMOD_MusicRemoveSync(
 HSYNC sync
);

sync Handle of the synchronizer to remove.

BASS_ERROR_NOMUSIC A MOD music has not been loaded.
BASS_ERROR_HANDLE sync is not valid.

BASSMOD_MusicSetAmplify

Sets the MOD music's amplification level.

Parameters

Return value
If succesful, then TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
As the amplification level get's higher, the sample data's range increases, and therefore, the resolution increases. But if
the level is set too high, then clipping can occur, which can result in distortion of the sound.

See also
BASSMOD_MusicSetPanSep

BOOL WINAPI BASSMOD_MusicSetAmplify(
 DWORD amp
);

amp Amplification level... 0 (min) - 100 (max)... the default when a MOD music is loaded is 50.

BASS_ERROR_NOMUSIC A MOD music has not been loaded.

BASSMOD_MusicSetPanSep

Sets the MOD music's pan seperation level.

Parameters

Return value
If succesful, then TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
By default BASSMOD uses a linear panning "curve". If you want to use the panning of FT2, use a pan seperation setting
of around 35. To use the Amiga panning (ie. full left and right) set it to 100.

See also
BASSMOD_MusicSetAmplify

BOOL WINAPI BASSMOD_MusicSetPanSep(
 DWORD pan
);

pan Pan seperation... 0 (min) - 100 (max), 50 = linear (which is the default when a MOD music is loaded).

BASS_ERROR_NOMUSIC A MOD music has not been loaded.

BASSMOD_MusicSetPosition

Sets the playback position of the MOD music.

Parameters

Return value
If succesful, then TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
When the BASS_MUSIC_POSRESET flag is active, all notes that were playing before the position changed will be
stopped. Otherwise, the notes will continue playing until they are stopped in the MOD music. When setting the position in
seconds, the BPM & tempo are updated to what they would normally be at the new position. Otherwise they are left as
they were prior to the postion change.

Example
To set the position of the MOD music to row 20 of order 10.

See also
BASSMOD_MusicGetPosition, BASSMOD_MusicIsActive, BASSMOD_MusicGetLength

BOOL WINAPI BASSMOD_MusicSetPosition(
 DWORD pos
);

pos The position... LOWORD = order, HIWORD = row. If HIWORD = 0xFFFF, then LOWORD = position in
seconds. Setting the position in seconds requires that the BASS_MUSIC_CALCLEN flag was used when the
MOD music was loaded.

BASS_ERROR_NOMUSIC A MOD music has not been loaded.
BASS_ERROR_POSITION The requested position is illegal.

BASSMOD_MusicSetPosition(MAKELONG(10,20));

BASSMOD_MusicSetPositionScaler

Sets the MOD music's BASSMOD_MusicGetPosition scaler.

Parameters

Return value
If succesful, then TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
When you call BASSMOD_MusicGetPosition, the row (HIWORD) will be scaled by this value. By using a higher scaler,
you can get a more precise position indication.

Example
To get the position of the MOD music accurate to within a 10th of a row.

See also
BASSMOD_MusicGetPosition

BOOL WINAPI BASSMOD_MusicSetPositionScaler(
 DWORD scale
);

scale The scaler... 1 (min) - 256 (max)... the default when a MOD music is loaded is 1.

BASS_ERROR_NOMUSIC A MOD music has not been loaded.

DWORD pos,order,row,row10th;
BASSMOD_MusicSetPositionScaler(10); // set the scaler
pos=BASSMOD_MusicGetPosition();
order=LOWORD(pos); // the order
row=HIWORD(pos)/10; // the row
row10th=HIWORD(pos)%10; // the 10th of a row

BASSMOD_MusicSetSync

Sets up a synchronizer on the MOD music.

Parameters

Sync types, with param and SYNCPROC data definitions.

Return value
If succesful, then the new synchronizer's handle is returned, else 0 is returned. Use BASSMOD_ErrorGetCode to get the
error code.

Error codes

Remarks
Multiple synchronizers may be used. Use BASSMOD_MusicRemoveSync to remove a synchronizer. If the
BASS_SYNC_ONETIME flag is used, then the sync is automatically removed after it's occured (ie. there's no need to
remove it manually).

The MOD music does not have to be playing to set a synchronizer, you can set synchronizers before or while playing the
music. Equally, you can also remove synchronizers at any time.

Example
Do some processing until the MOD music reaches the 10th order.

HSYNC WINAPI BASSMOD_MusicSetSync(
 DWORD type,
 DWORD param,
 SYNCPROC *proc,
 DWORD user
);

type The type of sync... see the table below. If you want the sync to occur only once, then also use the
BASS_SYNC_ONETIME flag.

param The sync parameters, depends on the sync type... see the table below.
proc The callback function.
user User instance data to pass to the callback function.

BASS_SYNC_POS Sync when the music reaches a position.
param : LOWORD = order (0=first, -1=all), HIWORD = row (0=first, -1=all). data : LOWORD
= order, HIWORD = row.

BASS_SYNC_END Sync when the music reaches the end. Note that some MOD musics never reach the end,
they may jump to another position first. If the BASS_MUSIC_STOPBACK flag is used with a
MOD music (through BASSMOD_MusicLoad or BASSMOD_MusicPlayEx), then this sync
will also be called when a backward jump effect is played.
param : not used. data : 1 = the sync is triggered by a backward jump in a MOD music,
otherwise not used.

BASS_SYNC_MUSICINST Sync when an instrument (sample for the MOD/S3M/MTM formats) is played (not including
retrigs).
param : LOWORD = instrument (1=first), HIWORD = note (0=c0...119=b9, -1=all). data :
LOWORD = note, HIWORD = volume (0-64).

BASS_SYNC_MUSICFX Sync when the sync effect is used. The sync effect is E8x or Wxx for the XM/MTM/MOD
formats, and S2x for the IT/S3M formats (where x = any value).
param : 0 = the position is passed to the callback (data : LOWORD = order, HIWORD =
row), 1 = the value of x is passed to the callback (data : x value).

BASS_ERROR_NOMUSIC A MOD music has not been loaded.
BASS_ERROR_NOSYNC Syncs are disabled, due to the BASS_DEVICE_NOSYNC flag being used in the

BASSMOD_Init call.
BASS_ERROR_ILLPARAM An illegal param was specified.
BASS_ERROR_ILLTYPE An illegal type was specified.

BOOL order10=FALSE; // the order 10 flag
...
// the sync callback
void CALLBACK MySyncProc(HSYNC handle, DWORD data, DWORD user) {

See also
BASSMOD_MusicRemoveSync, SYNCPROC callback

 order10=TRUE; // set the order 10 flag
}
...
BASS_MusicSetSync(BASS_SYNC_POS|BASS_SYNC_ONETIME, MAKELONG(10,0), &MySyncProc, 0); //
set the one-time order 10 sync
while (!order10) {
 // order 10 has not arrived, so do some processing
}
// order 10 has arrived!

BASSMOD_MusicSetVolume

Sets the volume level of a channel or instrument in a MOD music.

Parameters

Return value
If succesful, then TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

Remarks
The effect of changes made with this function are not heard instantaneously, due to buffering. The volume level of all
channels and instruments is initially 100. For MOD formats that do not use instruments, read "sample" for "instrument".

See also
BASSMOD_MusicGetVolume, BASSMOD_MusicSetAmplify

BOOL WINAPI BASSMOD_MusicSetVolume(
 DWORD chanins,
 DWORD volume
);

chanins The channel or instrument to set the volume of... if the HIWORD is 0, then the LOWORD is a channel number
(0 = 1st channel), else the LOWORD is an instrument number (0 = 1st instument).

volume The volume level... 0 (min) - 100 (max).

BASS_ERROR_NOMUSIC A MOD music has not been loaded.
BASS_ERROR_NOTAVAIL chanins is not valid.
BASS_ERROR_ILLPARAM volume is not valid.

BASSMOD_MusicStop

Stops the MOD music.

Return value
If successful, TRUE is returned, else FALSE is returned. Use BASSMOD_ErrorGetCode to get the error code.

Error codes

See also
BASSMOD_MusicPlay, BASSMOD_MusicPlayEx

BOOL WINAPI BASSMOD_MusicStop();

BASS_ERROR_NOMUSIC A MOD music has not been loaded.

SYNCPROC callback

User defined synchronizer callback function.

Parameters

Remarks
A sync callback function should be very quick as other syncs can't be processed until it has finished.

See also
BASSMOD_MusicSetSync

void CALLBACK YourSyncProc(
 HSYNC handle,
 DWORD data
 DWORD user
);

handle The sync that has occured.
data Additional data associated with the sync's occurance.
user The user instance data given when BASSMOD_MusicSetSync was called.

	Initialization, info, etc...
	BASSMOD_ErrorGetCode
	BASSMOD_Free
	BASSMOD_GetCPU
	BASSMOD_GetDeviceDescription
	BASSMOD_GetVersion
	BASSMOD_GetVolume
	BASSMOD_Init
	BASSMOD_SetVolume

	MOD music
	BASSMOD_MusicDecode
	BASSMOD_MusicFree
	BASSMOD_MusicGetLength
	BASSMOD_MusicGetName
	BASSMOD_MusicGetPosition
	BASSMOD_MusicGetVolume
	BASSMOD_MusicIsActive
	BASSMOD_MusicLoad
	BASSMOD_MusicPause
	BASSMOD_MusicPlay
	BASSMOD_MusicPlayEx
	BASSMOD_MusicRemoveSync
	BASSMOD_MusicSetAmplify
	BASSMOD_MusicSetPanSep
	BASSMOD_MusicSetPosition
	BASSMOD_MusicSetPositionScaler
	BASSMOD_MusicSetSync
	BASSMOD_MusicSetVolume
	BASSMOD_MusicStop
	Callback functions
	SYNCPROC callback

