
Bill Day
bill.day@sun.com

Technology Evangelist
Sun Microsystems

Java™ Media Programming
Code Camp



We make the net work.

Note:  This tutorial assumes you will be deploying on the Java™ 2 
Platform, Standard Edition (J2SE™ Platform).  Examples were 
developed and tested under J2SE SDK version 1.4.0.

Agenda

� Overview of the Java™ 2 Platform

� Introduction to the Media APIs

� In Depth: Java 2D� API

� In Depth: Java Media Framework

� In Depth: Java 3D� API

� Summary and Resources



We make the net work.

Overview of the
Java™ 2 Platform



We make the net work.

Overview of the Java� 2 Platform
• Java 2 Platform technology is developed via the Java

Community Process (JCP): www.jcp.org

• The JCP is used to develop specifications for Java
programming APIs and related technologies

• JCP specifications are developed starting from a Java
Specification Request (JSR)

• Before final acceptance, a JSR expert group must
provide:
– Specification

– Reference implementation

– Testing Compatibility Kit (TCK) used by implementers
to verify compatibility with specification



We make the net work.

• Java programming language specification
(grammar, keywords)

• Virtual machine spec (including bytecode)

• Core APIs

– Specified for each Java 2 Platform edition:
Java 2 Platform, Enterprise Edition (J2EE™ Platform), Java 2

Platform, Standard Edition (J2SE�Platform), and Java 2

Platform, Micro Edition (J2ME� Platform)

• Optional Packages

– Examples include JMF and Java 3D API

• Related tools

– Compiler, RMI registry, javadoc, etc.

Overview of the Java� 2 Platform



We make the net work.

Differences Between
Core APIs and Optional Packages
• All Java technology licensees must implement the

core APIs for a given edition

– For the J2SE™ Platform, this includes the java.*
packages plus a few related APIs such as javax.swing ,

etc.

– J2SE version 1.4 includes Java 2D, Image I/O, and Sound
APIs built-in

• Licensees may choose to implement an Optional
Package

– If they do, they must implement the entire package
according to specification

– Provided in javax packages

– Examples: JMF and Java 3D APIs



We make the net work.

Java� Platform Media Support
• Java 1.0 and 1.1 technology

– Primitive core support for AWT-based 2D graphics, limited
audio (applets only)

• Java 2 version 1.2 technology

– J2SE™ Platform: Java 2D, Java Sound Engine

– Optional packages: Java 3D, JMF, Java Speech

• Java 2 version 1.3 technology

– J2SE Platform: New Java 2D features, Sound API

– Optional packages: Java 3D and JMF updates

• Java 2 version 1.4 technology

– J2SE Platform: Java 2D performance enhancements, new
Image I/O framework

– Revisions to optional packages: updated Java 3D API, new
open source Java Speech implementation



We make the net work.

Introduction to the

Media APIs



We make the net work.

Note: “Java Media” properly refers to the entire set of Java 
Media APIs.  “JMF” refers to a specific API, the Java Media 
Framework.

Introduction to the Java� Media APIs
� Java 2D
� Java Image I/O
� Java Sound
� Java Media Framework
� Java 3D
� Java Speech
� Java Advanced Imaging
� Java Shared Data Toolkit



We make the net work.

� Java 2D� API
– 2D graphics and image manipulation

– Graphics capabilities extended in Graphics2D

• Java Image I/O
– Framework for image input and output

– Handles transcoding between image formats, accessing
individual images in multi-image files, various other
image I/O operations

� Java Sound API
– Software sound processor and MIDI synthesizer

– Sound engine (Java 2 SDK 1.2) and sound API (beginning
in Java 2 SDK 1.3)

Introduction to the Java� Media APIs



We make the net work.

� Java� Media Framework API
– Playback of synchronized media in 1.0 API
– 2.0 API adds support for media capture and streaming of

audio and video

� Java 3D� API
– Object-based 3D graphics runtime
– Optimized for fast 3D rendering for simulations,

interactive graphics, gaming, and similar uses

� Java Speech API
– Speech recognition and synthesis

Introduction to the Java� Media APIs



We make the net work.

� Java Advanced Imaging API
– Advanced 2D image processing

– Implements many Java 2D API interfaces

• Java Shared Data Toolkit
– Free toolkit for adding collaborative features to Java

technology-based applications

– Objects share data via a Session object, JSDT URLs,
and a JSDT registry

Introduction to the Java� Media APIs



We make the net work.

Availability of J2SE™ Platform
Core Media APIs

API Type Spec Related 
JSRs 

FAQ Reference 
Impl. 

Mailing 
list 

Java 2D Core  
Java 2 

Yes (part 
of Java 2 
specs) 

JSR 59 Yes Yes (part 
of J2SE 
v1.4 RI) 

Yes 

Java 
Image 
I/O 

Core    
Java 2 

Yes (part 
of Java 2 
specs) 

JSRs 15 
and 59 

Yes Yes (part 
of J2SE 
v1.4 RI) 

Yes 

Java 
Sound 

Core    
Java 2 

Yes (part 
of Java 2 
specs) 

JSR 59 Yes Yes (part 
of J2SE 
v1.4 RI) 

Yes 

 



We make the net work.

Availability of Optional Package Media
APIs
API Type Spec Related 

JSRs 
FAQ Reference 

Impl. 
Mailing 
list 

JMF Optional 
Package 

Yes (2.0) JSRs 
908, 135 

Yes Yes 
(2.1.1a) 

Yes 

Java 3D Optional 
Package 

Yes (1.3 
Beta 2) 

JSRs 
912, 
148, 184 

Yes Yes (1.3 
Beta 2) 

Yes 

Java 
Speech 

Optional 
Package 

Yes (1.0) 2.0 API 
via JSR 
113 

Yes No, but 
FreeTTS 
and other 
impls 

Yes 

Java 
Advanced 
Imaging 

Optional 
Package 

Yes (1.1) JSR 34 Yes Yes 
(1.1.1_01) 

Yes 

Java 
Shared 
Data 
Toolkit 

Optional 
Package 

Yes (2.0 
released) 

N/A Yes Yes Yes 

 



We make the net work.

Potentially Competing Technologies
• OpenGL

– Procedural, low-level graphics language

– Java technology-to-OpenGL bindings also available from
various third party vendors

– Many Java 3D API implementations (including Solaris�,
Win32, Linux, and IRIX) build on OpenGL

– Competes with and complementary to Java 3D API

• X3D (XML compliant update to VRML)

– X3D primarily provides a file format for 3D models

– Sun joined the Web 3D Consortium in mid-1998 and
contributed its source code to start the Xj3D Toolkit (an
X3D and VRML97 browser written using Java 3D)

– Complementary to Java 3D API



We make the net work.

Potentially Competing Technologies
• QuickTime for Java�

– Apple has released Java platform bindings
to its QuickTime multimedia architecture

– Targets established QuickTime market (good for existing QT
users, bad if need other formats)

– Primarily competes with JMF

• RealSystem and Windows Media

– Real Network's and Microsoft's streaming media systems,
respectively

– Microsoft SDK completely Win32-reliant

– RealSystem tends to be too content creator centric, not
developer centric enough

– Primary competition is JMF



We make the net work.

In Depth:

Java 2D™ API



We make the net work.

Java 2D� API

• Treats all forms of 2D visual information
(text, primitive shapes, polygons, Bezier curves,
images, etc.) alike

• Enables consistent compositing, color manipulation,
other 2D operations

• Included in Java™ 2 Platform, Standard Edition

– All J2SE (and thereby J2EE) platform implementations,
including Java Plug-in technology, are required to support
Java 2D API

– As of J2SE v1.4 release, includes Image I/O, too



We make the net work.

Java 2D API Package Summary
• Java 2D API is specified in the following packages:

– java.awt (portions 2D related)

– java.awt.color

– java.awt.font

– java.awt.geom

– java.awt.image (portions 2D related), java.awt.image.renderable

– java.awt.print

• Sun implementations of the J2SE™ Platform
provide support for JPEG via package:

– com.sun.image.codec.jpeg

• J2SE v1.4 release and beyond also includes Image I/O
Framework via packages under:
– javax.imageio



We make the net work.

Graphics2D:
A Better Graphics Class
� java.awt.Graphics2D is the

rendering engine for the Java 2D API

� Graphics2D extends abstract class

Graphics , maintaining backwards

compatibility

� Example01 illustrates using Graphics2D
by casting a Graphics reference to a

Graphics2D reference



We make the net work.

051    * The paint method provides the real magic.  Here we
052    * cast the Graphics object to Graphics2D to illustrate
053    * that we may use the same old graphics capabilities with
054    * Graphics2D that we are used to using with Graphics.
055    **/
056   public void paint(Graphics g) {
057     //Here is how we used to draw a square with width
058     //of 200, height of 200, and starting at x=50, y=50.
059     g.setColor(Color.red);
060     g.drawRect(50,50,200,200);
061  
062     //Let's set the Color to blue and then use the Graphics2D
063     //object to draw a rectangle, offset from the square.
064     //So far, we've not done anything using Graphics2D that
065     //we could not also do using Graphics.  (We are actually
066     //using Graphics2D methods inherited from Graphics.)
067     Graphics2D g2d = (Graphics2D)g;
068     g2d.setColor(Color.blue);
069     g2d.drawRect(75,75,300,200);
070   }

Java 2D API: Example01, Graphics2D



We make the net work.

Java 2D API:
Example01 Output



We make the net work.

Java 2D API:
Shapes and GeneralPaths
� Shapes are used to create arbitrarily

shaped 2D graphics

� GeneralPaths are the most general

implementation of Shape

� GeneralPath interiors are specified

using winding rules

� All Shapes , including GeneralPaths ,

are manipulated using matrices in
AffineTransforms



We make the net work.

073     //Now, let's draw another rectangle, but this time, let's
074     //use a GeneralPath to specify it segment by segment.
075     //Furthermore, we're going to translate and rotate this 
076     //rectangle relative to the Device Space (and thus, to
077     //the first two quadrilaterals) using an AffineTransform.
078     //We also will change its color.
079     GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD);
080     path.moveTo(0.0f,0.0f);
081     path.lineTo(0.0f,125.0f);
082     path.lineTo(225.0f,125.0f);
083     path.lineTo(225.0f,0.0f);
084     path.closePath();

Java 2D API: Example02, GeneralPaths
and Transforms

� Example02 illustrates GeneralPath ,

winding rules, and AffineTransform



We make the net work.

086     AffineTransform at = new AffineTransform();
087     at.setToRotation(-Math.PI/8.0);
088     g2d.transform(at);
089     at.setToTranslation(50.0f,200.0f);
090     g2d.transform(at);
091 
092     g2d.setColor(Color.green);
093     g2d.fill(path);

Java 2D API: Example02 (Cont.)



We make the net work.

Java 2D API:
Example02 Output



We make the net work.

Java 2D API:
Curves, Text, and Antialiasing

� Example03 introduces GeneralPath's
quadto() and curveto() methods,

adds text into the mix, and illustrates how
to request antialiased rendering



We make the net work.

061   public void paint(Graphics g) {
062     Graphics2D g2d = (Graphics2D) g;
063 
064     //This time, we want to use anti-aliasing if possible
065     //to avoid the jagged edges that were so prominent in
066     //our last example.  We ask the Java 2D rendering
067     //engine (Graphics2D) to do this using a "rendering hint".
068     g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
069        RenderingHints.VALUE_ANTIALIAS_ON);
070 
071     //We reuse our GeneralPath filled shape.  We translate
072     //and rotate this shape as we did before.
073     GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD);
074     path.moveTo(0.0f,0.0f);
075     path.lineTo(0.0f,125.0f);
076     path.quadTo(100.0f,100.0f,225.0f,125.0f);
077     path.curveTo(260.0f,100.0f,130.0f,50.0f,225.0f,0.0f);
078     path.closePath();

Java 2D API: Example03, Curves and
Antialiasing



We make the net work.

080     AffineTransform at = new AffineTransform();
081     at.setToRotation(-Math.PI/8.0);
082     g2d.transform(at);
083     at.setToTranslation(0.0f,150.0f);
084     g2d.transform(at);
085 
086     g2d.setColor(Color.green);
087     g2d.fill(path);
088 
089     //Now, let's use some of the Java font and text support.
090     //Note that you need to be sure you have the same fonts I
091     //use in the example (Times New Roman True Type) if you
092     //execute this example code.
093     Font exFont = new Font("TimesRoman",Font.PLAIN,40);

104     g2d.setFont(exFont);
105     g2d.setColor(Color.black);
106     g2d.drawString("Hello Camp",0.0f,0.0f);
107   }

Java 2D API: Example03 (Cont.)



We make the net work.

Java 2D API:
Example03 Output



We make the net work.

Java 2D API:

Image Processing

� Java 2D API presents a new model
for image processing, the buffered image
model

� Example04, aka �ImageDicer�, makes use
of the buffered image model to blur,
sharpen, and otherwise manipulate user
specified images



We make the net work.

Lady Agnew 
of Locknaw, 
by John Singer 
Sargent

ImageDicer Source Image



We make the net work.

001 short[] invert = new short[256];
002 for (int i = 0; i < 256; i++)
003   invert[i] = (short)(255 - i);
004 BufferedImageOp invertOp = new LookupOp(
005     new ShortLookupTable(0, invert), null);

Java 2D API: Color
Inversion With ImageDicer

� Java 2D API provides lookup table support
for use in color-related image
manipulations

� Perform color inversion by inverting each
of the red, blue, and green (RGB) color
values for each pixel in an image



We make the net work.

Inverting all 
three RGB 
channels gives 
a negative 
image

Example04 �ImageDicer�:
Inverted Image



We make the net work.

Java 2D API Tip:
Snapshot Your Components

� Use Sun�s JPEG support classes
to save snapshots of Components

� The basic steps are:

– Create a BufferedImage with the same dimensions

as your Component

– Draw the Component into the BufferedImage

– Save the BufferedImage into a file using the JPEG

package and FileOutputStream

Note: Requires the use of com.sun.image.codec.jpeg , which may

not be available in all Java 2 runtimes



We make the net work.

001   public void saveComponentAsJPEG(Component myComponent, 
002                                   String filename) {
003     Dimension size = myComponent.getSize();
004     BufferedImage myImage = 
005         new BufferedImage(size.width, size.height,
006         BufferedImage.TYPE_INT_RGB);
007     Graphics2D g2 = myImage.createGraphics();
008     myComponent.paint(g2);
009     try {
010       OutputStream out = new FileOutputStream(filename);
011       JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
012       encoder.encode(myImage);
013       out.close();
014     }
015     catch (Exception e) { System.out.println(e); }
016   }

Java 2D API: General Case
SaveComponentAsJPEG method



We make the net work.

317   public void saveImage(String filename) {
318     try {
319       OutputStream out = new FileOutputStream(filename);
320       JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
321       encoder.encode(mBufferedImage);
322       out.close();
323     }
324     catch (Exception e) { System.out.println(e); }
325   }

Java 2D API: Snapshot method in
Example04 �ImageDicer�

� We can further simplify the snapshot
method if we already have a
BufferedImage available, as in Example04
�ImageDicer�:



We make the net work.

Java 2D API: New
Features in J2SE SDK 1.4

� Pluggable Image I/O framework

� New 2D pipeline architecture for better performance
(details in J2SE 1.4 SDK docs)

� Hardware acceleration for offscreen images

� Public Unicode Bidirectional Algorithm used to order
and arrange bidi text

� Introduced in 1.3 release: support for PNG image
format and multiple monitors

� Learn more from the Java 2D documentation:
java.sun.com/products/java-media/2D/



We make the net work.

In Depth:
Java™ Media Framework



We make the net work.

Java� Media
Framework API (JMF)

� JMF delivers and renders
synchronized multimedia

� Specified and implemented in phases:
– JMF 1.0 supports Java Media Players

to play audio and video from both push
and pull sources

– JMF 2.0 adds support for audio and video capture from
input devices, on-the-fly manipulations of media data,
plugable codecs



We make the net work.

JMF Implementations
� Sun provides an all-Java technology
version
– Implements JMF using Java programming language

code (no native methods) for maximum portability

– Runs on any compliant J2SE™ Platform
implementation (Solaris, Linux, Win32, AIX, HP-UX,
any other OS with J2SE runtime)

� Sun also provides �performance packs�
optimized for Solaris and Win32

� Blackdown.org provides Linux
implementation



We make the net work.

JMF: Supported Content Types
� Supported media content types include:

– QuickTime, AVI video
– MPEG-1
– WAV, AU audio
– MIDI
– Sun supports MPEG-1 Layer 3 (MP3) audio in its JMF 2.0

implementation
– H.261, H.263 video and G.723 audio low bitrate ITU

protocols

� Details on content types supported in Sun

implementations: java.sun.com/products/java-

media/jmf/2.1.1/formats.html



We make the net work.

JMF: Supported Protocols

� Supported JMF 1.0 protocols:

– HTTP, FILE, FTP, RTP receive-only

� JMF 2.0 adds support for RTP send

– RTP send support enables JMF-based audio and video
servers

� Details on protocols supported in the Sun

implementations: java.sun.com/products/java-

media/jmf/2.1.1/formats.html



We make the net work.

JMF: Player Basics

• Players extend MediaHandler and serve as an adapter
for time-based media

• Media itself is encapsulated by a DataSource object

Media

Datasource

Player
External Objects Interacting

with Media via Player Adapter

Player as an Adapter for Media



We make the net work.

JMF Player API: javax.media
• Players, content handling, and core synchronization

are in javax.media package

– Clock , Controller , Player interfaces

– MediaHandler , MediaProxy interfaces

– various Control and Listener interfaces

– Manager , PackageManager classes

– All events, errors, and exceptions to support state machine
model

• Note: JMF events extend
java.util.EventObject , consistent with

standard Java™ 2 Platform event mechanisms



We make the net work.

JMF Player API:
javax.media.protocol

� Data source and protocol resolution specified
in javax.media.protocol
– Interfaces for source stream configuration and

source controls

– Classes to support push and pull DataSources

� Most JMF developers will not need to use this
package directly

– Manager automatically creates Player and

DataSource and hooks the two together

– Player methods called by programmer automatically use

DataSource when need be



We make the net work.

JMF Player API:
Player States

� Players behave as state machines

� JMF specification details both legal
and illegal state transitions and the
corresponding events and exceptions



We make the net work.

JMF 2.0 
supports
access to
internals
of JMF
state 
model

Unrealized

Player State Diagram

Realizing

Realized

Prefetching

Prefetched

Started

“ Unrealized” “ Stopped” “ Started”

JMF Player API:
State Model



We make the net work.

Example05 �JMFApplet�

� JMFApplet illustrates several key
JMF Player concepts, including how to:

– Use Manager to request a Player instance

– Register ControllerListener for JMF callbacks

– Catch RealizeCompleteEvent in

controllerUpdate() method to finish

setting up Player

– Stop and properly deallocate Player
to free up any exclusive resources



We make the net work.

024 public class Example05 extends Applet 
                           implements ControllerListener { 
025     private URL myURL = null;
026     private Player myPlayer = null;
027     private Component myVisual = null;
028     private Component myControls = null;
029     private Panel visualPanel = null;
030 
031     /**
032      * Initialize JMFApplet.  We lay out the interface and
033      * create our player in the init().
034     **/
035     public void init() {
036         super.init();
037         
038         // Specify AWT Layout Manager.
039         setLayout (new BorderLayout());
040 
041         // Load URL from the web page JMFApplet is embedded in.
042         String asset = getParameter("ASSET");

Example05 �JMFApplet�



We make the net work.

044         // Check the URL and create a URL object to hold it.
045         if (asset.equals("")) {
046            //we haven't entered an asset in the applet.
047         } else {
048            try {
049               myURL = new URL(getDocumentBase(),asset);
050            } catch (MalformedURLException e) {
051               //We entered an incomplete asset or built incorrect URL.
052               //More robust applet should handle this gracefully.
053            }   
054         }

Example05 �JMFApplet� (Cont.)



We make the net work.

055         try {
056            //Here's an interesting bit.  Manager is used to 
057            //create the actual player for this URL.  We then
058            //add JMFApplet as a ControllerListener for myPlayer.
059            //This lets us respond to RealizeCompleteEvents.
060            myPlayer = Manager.createPlayer(myURL);
061            myPlayer.addControllerListener(this);
062         } catch (IOException e) {
063            // Encountered some problem with I/O; exit.
064            System.out.println("I/O problem attempting to 
                                   create player...exiting");
065            System.exit(1);
066         } catch (NoPlayerException e) {
067            // Unable to return a usable Player; exit.
068            System.out.println("No usable Player returned...exiting");
069            System.exit(1);
070         }
071     }

Example05 �JMFApplet� (Cont.)



We make the net work.

074      * Override the default applet start method to call Player's
075      * realize().  This will first do the realization, which in turn
076      * triggers the final bits of GUI building in the controllerUpdate()
077      * method.  We do not automatically start playback:  The user needs
078      * to click on the "play" button in our applet to start playing the
079      * media sample.
080     **/
081     public void start() {
082        myPlayer.realize();
083     }
084 
085      
086     /**
087      * Override the default applet stop method to call myPlayer.stop()
088      * and myPlayer.deallocate() so that we properly free up resources
089      * if someone exits this page in their browser.
090     **/
091     public void stop() {
092        myPlayer.stop();
093        myPlayer.deallocate();
094     }

Example05 �JMFApplet� (Cont.)



We make the net work.

097      * Since we must know when realize completes, we use 
098      * controllerUpdate() to handle RealizeCompleteEvents.
099      * When we receive the RealizeCompleteEvent, we layout 
100      * and display the video component and controls in our 
101      * applet GUI.
102     **/
103     public void controllerUpdate(ControllerEvent event) {
104        if (event instanceof RealizeCompleteEvent) {
105           //System.out.println("Received RCE...");
106           // Now that we have a Realized player, we can get the
107           // VisualComponent and ControlPanelComponent and pack
108           // them into our applet.
109           myVisual = myPlayer.getVisualComponent();
110           if (myVisual != null) {
111              // In order to ensure that the VisualComponent
112              // is not resized by BorderLayout, I nest it
113              // within visualPanel using FlowLayout.
114              visualPanel = new Panel();
115              visualPanel.setLayout(new FlowLayout()); 
116              visualPanel.add(myVisual);

Example05 �JMFApplet� (Cont.)



We make the net work.

117              add(visualPanel,BorderLayout.CENTER);
118              //System.out.println("Added VisualComponent...");
119            }
120            myControls = myPlayer.getControlPanelComponent();
121            if (myControls != null) {
122               add(myControls,BorderLayout.SOUTH);
123               //System.out.println("Added controls...");
124            }
125            //invalidate();
126            validate();
127        }
128        // Else we simply consume the event.
129     }
130 }

Example05 �JMFApplet� (Cont.)



We make the net work.

� Example05 �JMFApplet� playing welcome.wav audio file
using the Sun JMF 1.1, Java platform-based player on

Solaris� 7 software within Netscape Communicator� 4.51

Example05 �JMFApplet� Output



We make the net work.

� The same Example05, with two instances playing example
audio and video under Sun JMF 2.1.1a performance pack for

Win32 and the Java™ 2 Plug-in in Microsoft Internet
Explorer 5.5 browser

Example05 �JMFApplet� Output



We make the net work.

JMF Player API:
Other Capabilities

� JMF also allows the programmer to:

– Control multiple Players with a single Controller
object, perhaps a Player itself

– Integrate Players with other Java technology-based

software. Same language, same tools, etc.

– Integrate Players with JavaBeans � architecture-

based components for reusable streaming media
components that can be quickly connected together using
visual builder tools



We make the net work.

New in the JMF 2.0 API:
Media Capture
� Once you are comfortable with JMF Player
basics, learn more about JMF 2.0 API's media
capture and streaming capabilities

� Excellent resource: Simon Ritter's article,
�Image Capture From Webcams Using the
Java Media Framework API�, available with

example source code from:
sun.com/developers/evangcentral/totallytech/jmf.html

� More in depth information from the JMF API

docs and guide:
java.sun.com/products/java-media/jmf/



We make the net work.

In Depth:

Java 3D™ API



We make the net work.

Java 3D� API

• Java 3D API is an optional package API specifying a
scene graph based 3D graphics runtime

• Java 3D API is optimized for display speed (interactive
graphics and games) rather than image quality
(render farms)



We make the net work.

Java 3D� Implementations

• Sun provides Win32 and Solaris� operating
environment implementations

• Other implementations available today:
– Blackdown.org for Linux

– SGI IRIX

– Hewlett Packard HP-UX

– IBM AIX



We make the net work.

Java 3D API: Requirements

• Sun�s Win32 implementation requires:

– Java 3D implementation itself, available from Sun�s
web site

– J2SE™ Platform, available from Sun

– OpenGL 1.1 (bundled with WinNT 4.0, Win98,and
newer Win32 flavors)

– Optional: Sun also provides a Java 3D implementation
for Win32 that uses DirectX rather than OpenGL



We make the net work.

Java 3D API: Strengths
� High level, object oriented view
of 3D graphics

� Optimized for speed using compiled branch
groups, capability bits, etc.

� Large number of 3D loaders are available to
import content into Java 3D runtime

– Currently 20+ loader packages available, supporting
formats varying from X3D and VRML97 to DXF to Protein
DataBank

– Detailed list of loaders and supported formats:
www.j3d.org/utilities/loaders.html



We make the net work.

Java 3D API: Strengths
� Sun and the Web3D Consortium also
provide an X3D/VRML97 browser written
entirely using Java technology and based
upon the Java 3D API

� Ongoing work is being driven as an open
source project by the Web3D Consortium's
source task group, via its Xj3D Toolkit

� For more information, refer to:
www.web3d.org/TaskGroups/source/xj3d.html



We make the net work.

Java 3D API: Other Strengths
� Java 3D API supports exotic input
and control devices

– Data gloves

– Wands

– Heads-up displays (HUDs)

– Virtual environments such as the
NCSA C.A.V.E.

� Java 3D API specifies spatialized
vector math support not available

elsewhere in the Java™ 2 Platform



We make the net work.

Java 3D API: Potential Weaknesses

� Java 3D API hides rendering pipeline details
from the developer, a �feature� with
sometimes negative consequences

– Java platform-to-OpenGL bindings may be
a better choice for developers needing direct access to
the rendering pipeline

� Java 3D API components are heavyweight,
which can complicate Swing-based GUI
development



We make the net work.

Java 3D API Package Summary

� Java 3D API is specified in:

– javax.media.j3d

– javax.vecmath

� Sun provides some very useful supporting
classes and utilities under:

– com.sun.j3d



We make the net work.

Java 3D API:
Scene Graph Basics

� Java 3D API programs create a tree-like
structure of Nodes to represent the world to

be rendered and rendering instructions
� Java 3D API scene graphs contain
two major branches
– Content branch: describes the objects to render (how to

draw them, color them, arrange them in 3D space, how
they should behave)

– View branch: everything else (placement of user�s view
in 3D space, ability to move this view interactively,
manipulations for stereo viewing, HUDs, etc.)



We make the net work.

Java 3D API:
Scene Graph Basics

� Java 3D API view branches are typically quite
small compared to content branches

� View branches will often contain only a few
nodes, while content branches may contain
thousands for complicated 3D worlds

� Consequently, many Java 3D API
optimizations focus on the content branch



We make the net work.

Java 3D API:
View Branch Example

� Example06 creates a very simple Java
technology-based 3D world

� This world illustrates

– Using the heavyweight Canvas3D component within a

Frame container

– Creating the view branch of the scene graph

– Attaching a View to the view branch



We make the net work.

046     //Title our frame and set its size.
047     super("Java 3D Example06, Basics");
048     setSize(400,300);
049 
050     //Here is our first Java 3D-specific code.  We add a
051     //Canvas3D to our Frame so that we can render our 3D
052     //graphics.  Java 3D requires a heavyweight component
053     //Canvas3D into which to render, and in order to instantiate
054     //this component, we first have to access a 3D GraphicsConfiguration
055     //using GraphicsConfigTemplate3D and java.awt GraphicsEnvironment
056     //and related classes.  Note how we use GraphicsEnvironment's static
057     //method getLocalGraphicsEnvironment() to return reference to the
058     //systems GraphicsEnvironment.
059     GraphicsConfigTemplate3D myGraphicsConfigTemplate3D 
                       = new GraphicsConfigTemplate3D();
060     GraphicsEnvironment myGraphicsEnvironment 
                       = GraphicsEnvironment.getLocalGraphicsEnvironment();
061     GraphicsDevice myGraphicsDevice 
                       = myGraphicsEnvironment.getDefaultScreenDevice();
062     GraphicsConfiguration myGraphicsConfiguration 
          = myGraphicsDevice.getBestConfiguration(myGraphicsConfigTemplate3D);
063     Canvas3D myCanvas3D = new Canvas3D(myGraphicsConfiguration);
064     add(myCanvas3D,BorderLayout.CENTER);
065 
066     //Turn on the visibility of our frame.
067     setVisible(true);

Java 3D API: Example06, Canvas3D



We make the net work.

089    * constructView() takes a Canvas3D reference and constructs
090    * a View to display in that Canvas3D.  It uses the default
091    * PhysicalBody and PhysicalEnvironment (both required to be
092    * set or else the 3D runtime will throw exceptions).  The
093    * returned View is used by constructViewBranch() to attach
094    * the scene graph's ViewPlatform to a Canvas3D for rendering.
095    *
096    * @see constructViewBranch(View)
097   **/
098   private View constructView(Canvas3D myCanvas3D) {
099     View myView = new View();
100     myView.addCanvas3D(myCanvas3D);
101     myView.setPhysicalBody(new PhysicalBody());
102     myView.setPhysicalEnvironment(new PhysicalEnvironment());
103     return(myView);
104   }

Java 3D API: Example06, Constructing
the View



We make the net work.

108    * constructViewBranch() takes as input a View which we
109    * attached to our Canvas3D in constructView().  It constructs
110    * a default view branch for the scene graph, attaches
111    * the View to the ViewPlatform, and returns a reference to
112    * our Locale for use by constructContentBranch()
113    * in creating content for our scene graph.
114    *
115    * @see constructView(Canvas3D)
116    * @see constructContentBranch(Locale)
117   **/
118   private Locale constructViewBranch(View myView) {
119 
120     //First, we create the necessary coordinate systems
121     //(VirtualUniverse, Locale), container nodes
122     //(BranchGroup, TransformGroup), and platform which
123     //determines our viewing position and direction (ViewPlatform).
124     VirtualUniverse myUniverse = new VirtualUniverse();
125     Locale myLocale = new Locale(myUniverse);
126     BranchGroup myBranchGroup = new BranchGroup();
127     TransformGroup myTransformGroup = new TransformGroup();
128     ViewPlatform myViewPlatform = new ViewPlatform();

Java 3D API: Example06,
Finishing the View



We make the net work.

130     //Next, we insert the platform into the transform group,
131     //the transform group into the branch group, and the branch
132     //group into the locale's branch graph portion of the
133     //scene graph.
134     myTransformGroup.addChild(myViewPlatform);
135     myBranchGroup.addChild(myTransformGroup);
136     myLocale.addBranchGraph(myBranchGroup);
137 
138     //Finally, we attach our view to the view platform and we
139     //return a reference to our new universe.  We are ready to
140     //render 3D content!
141     myView.attachViewPlatform(myViewPlatform);
142     return(myLocale);
143   }

Java 3D API: Example06,
Finishing the View (Cont.)



We make the net work.

Java 3D API:
Example06 Output

• Calling no-op constructContentBranch()
turns the Java 3D renderer on (sets the scene graph
to be live), which renders empty universe



We make the net work.

Java 3D API:
Content Branch Example

� Example07 adds a more interesting body to
the constructContentBranch()
method of our previous example

– Uses the heavyweight Canvas3D component within a

Frame container

– Creates the view branch of the scene graph

– Attaches a View to the view branch



We make the net work.

152   private void constructContentBranch(Locale myLocale) {
153     //We first create a regular 2D font, then from that a
154     //3D font, 3D text, and 3D shape, in succession.  We use
155     //the default constructors for FontExtrusion and Appearance.
156     Font myFont = new Font("TimesRoman",Font.PLAIN,10);
157     Font3D myFont3D = new Font3D(myFont,new FontExtrusion());
158     Text3D myText3D = new Text3D(myFont3D, "Hello Camp");
159     Shape3D myShape3D = new Shape3D(myText3D, new Appearance());
160 
161     //We created a new branch group and transform group to hold
162     //our content.  This time when we create the transform group,
163     //however, we pass in a Transform3D to the transform group's
164     //constructor.  This 3D transform has been manipulated
165     //to perform the transformations we desire, which results
166     //in those manipulations being carried out on all children
167     //of the given transform group, in this case, our content.
168     BranchGroup contentBranchGroup = new BranchGroup();

Java 3D API: Example07



We make the net work.

169     Transform3D myTransform3D = new Transform3D();
170     myTransform3D.setTranslation(new Vector3f(-1.0f,0.0f,-4.0f));
171     myTransform3D.setScale(0.1);
172     Transform3D tempTransform3D = new Transform3D();
173     tempTransform3D.rotY(Math.PI/4.0d);
174     myTransform3D.mul(tempTransform3D);
175     TransformGroup contentTransformGroup 
                       = new TransformGroup(myTransform3D);
176 
177     //We add our child nodes and insert the branch group into
178     //the live scene graph.  This results in Java 3D rendering
179     //the content.
180     contentTransformGroup.addChild(myShape3D);
181     contentBranchGroup.addChild(contentTransformGroup);
182     myLocale.addBranchGraph(contentBranchGroup);
183   }

Java 3D API: Example07 (Cont.)



We make the net work.

Java 3D API:
Example07 Output

� Our universe is empty no more!



We make the net work.

Java 3D API: Utilities Can Make Your
Code Simpler

� You may have looked at the set-up code in
the first two examples and wondered
�Why do we have to make
so many redundant calls each time
we use the Java 3D API?�

� We do not, if we are willing to use
Sun utility classes (or write our own)

� Example08 makes use of Sun�s
SimpleUniverse and ColorCube



We make the net work.

047     //First, we use SimpleUniverse's static getPreferredConfiguration()
048     //method to set up our Canvas3D and add it to our Frame.
049     GraphicsConfiguration myGraphicsConfiguration
                              = SimpleUniverse.getPreferredConfiguration();
050     Canvas3D myCanvas3D = new Canvas3D(myGraphicsConfiguration);
051     add(myCanvas3D,BorderLayout.CENTER);
052 
053     //Then, we instantiate a SimpleUniverse using our Canvas3D,
054     //create our content branch, and add it into the SimpleUniverse.
055     SimpleUniverse myUniverse = new SimpleUniverse(myCanvas3D);
056     BranchGroup contentBranchGroup = constructContentBranch();
057     myUniverse.addBranchGraph(contentBranchGroup);

Java 3D API: Example08,
Using SimpleUniverse



We make the net work.

073    * constructContentBranch() is where we specify the 3D graphics
074    * content to be rendered.  We return the content branch group
075    * for use with our SimpleUniverse.  We also demonstrate the
076    * use of com.sun.j3d.utils.geometry.ColorCube to build more
077    * complicated 3D shapes.
078    *
079   **/
080   private BranchGroup constructContentBranch() {
081     Font myFont = new Font("TimesRoman",Font.PLAIN,10);
082     Font3D myFont3D = new Font3D(myFont,new FontExtrusion());
083     Text3D myText3D = new Text3D(myFont3D, "Hello Camp");
084     Shape3D myShape3D = new Shape3D(myText3D, new Appearance());
085     Shape3D myCube = new ColorCube();
086 
087     BranchGroup contentBranchGroup = new BranchGroup();
088     Transform3D myTransform3D = new Transform3D();
089     myTransform3D.setTranslation(new Vector3f(-1.0f,0.0f,-4.0f));
090     myTransform3D.setScale(0.1);
091     Transform3D tempTransform3D = new Transform3D();
092     tempTransform3D.rotY(Math.PI/4.0d);
093     myTransform3D.mul(tempTransform3D);

Java 3D API: Example08, ColorCube



We make the net work.

094     TransformGroup contentTransformGroup 
                       = new TransformGroup(myTransform3D);
095 
096     contentTransformGroup.addChild(myShape3D);
097     contentBranchGroup.addChild(contentTransformGroup);
098 
099     myTransform3D.setIdentity();
100     myTransform3D.setTranslation(new Vector3f(-0.5f,-0.5f,-2.3f));
101     myTransform3D.setScale(0.1);
102     TransformGroup cubeTransformGroup
                       = new TransformGroup(myTransform3D);
103 
104     cubeTransformGroup.addChild(myCube);
105     contentBranchGroup.addChild(cubeTransformGroup);
106 
107     return(contentBranchGroup);
108   }

Java 3D API: Example08,
ColorCube (Cont.)



We make the net work.

Java 3D API: Example08 Output

• Note the multi-colored ColorCube ,

and that it is offset in space from the text



We make the net work.

Java 3D API: Behaviors
� With the Java 3D API, behaviors are
scheduled when the view platform crosses
the stimulus bounds, a region of space
defined by the programmer

� Bounds are used by the Java 3D runtime to
avoid computations for non-visible or
inaudible Nodes

� Both sounds and behaviors have bounds

� Example09 illustrates basic behavior,
adding rotation to previous examples



We make the net work.

083    * constructContentBranch() is where we specify the 3D graphics
084    * content to be rendered.  We return the content branch group
085    * for use with our SimpleUniverse.  We have added a RotationInterpolator
086    * to Example03 so that in this case, our "Hello Camp" text rotates
087    * about the origin.  We have also removed the scaling and static
088    * rotation from the text, and the scaling from our ColorCube.
089   **/
090   private BranchGroup constructContentBranch() {
091     Font myFont = new Font("TimesRoman",Font.PLAIN,10);
092     Font3D myFont3D = new Font3D(myFont,new FontExtrusion());
093     Text3D myText3D = new Text3D(myFont3D, "Hello Camp");
094     Shape3D myShape3D = new Shape3D(myText3D, new Appearance());
095     Shape3D myCube = new ColorCube();
096 
097     BranchGroup contentBranchGroup = new BranchGroup();
098     Transform3D myTransform3D = new Transform3D();
099     TransformGroup contentTransformGroup = new TransformGroup(myTransform3D);
100     contentTransformGroup.addChild(myShape3D);
101 
102     Alpha myAlpha = new Alpha();
103     myAlpha.setIncreasingAlphaDuration(10000);

Java 3D API: Example09



We make the net work.

104     myAlpha.setLoopCount(-1);
105     RotationInterpolator myRotater = 
106                       new RotationInterpolator(myAlpha,contentTransformGroup);
107     myRotater.setTransformAxis(myTransform3D);
108     myRotater.setMinimumAngle(0.0f);
109     myRotater.setMaximumAngle((float)(Math.PI*2.0));
110     BoundingSphere myBounds = new BoundingSphere();
111     myRotater.setSchedulingBounds(myBounds);
112     contentTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
113     contentTransformGroup.addChild(myRotater);
114 
115     contentBranchGroup.addChild(contentTransformGroup);
116 
117     myTransform3D.setTranslation(new Vector3f(-0.5f,-0.5f,-2.3f));
118     TransformGroup cubeTransformGroup = new TransformGroup(myTransform3D);
119     cubeTransformGroup.addChild(myCube);
120     contentBranchGroup.addChild(cubeTransformGroup);
121 
122     return(contentBranchGroup);
123   }

Java 3D API:
Example09 (Cont.)



We make the net work.

Java 3D API:
Example09 Output

� The text rotates around in 3D space (rotates
counter-clockwise from viewer's perspective,
around the left bar of �H�)



We make the net work.

Summary and Resources



We make the net work.

What You Should Do Next

� Install the J2SE™ Platform 1.4 SDK and the

JMF and Java 3D™ APIs and try out the
included examples

� Experiment with 2D, JMF, and 3D to solve
your own problems, trying out the other
Media APIs as needed

� Enjoy the freedom and possibilities of
cross platform media programming by

getting started with the Java™ Media APIs
today!



We make the net work.

Resources
� The Java� Media APIs homepage links to more

information (including specs and more
examples) for each API:
java.sun.com/products/java-media

� jGuru Java Media APIs FAQ:
www.jguru.com/faq/Media

� The Java 3D™ Community site: www.j3d.org

� More Java Media APIs information, howtos,
tools, etc., are available now as part of the
Sun™ ONE Starter Kit:
www.sun.com/sunone/starterkit



We make the net work.

For more, please visit us at:
www.sun.com/developers/evangcentral

� All presentations

� Audiocasts

� Codecamp materials

� Technology briefings

� Code/articles/links/chats/resources

In pursuit of the best software in the universe



We make the net work.

IMPORTANT:  The source code and examples listed in these materials
are offered under the license at:
http://wireless.java.sun.com/berkeley_license.html

Software License



We make the net work.

Bill's Brief Bio

Bill Day is a Technology Evangelist at Sun 
Microsystems.
  
Bill moderates jGuru's Java™ Media APIs FAQ and 
speaks frequently on wireless technology, system 
security, and multimedia programming.  Bill also writes 
about software development for numerous publications 
and teaches Java and Wireless development as an 
extension instructor for the University of California 
Berkeley.

More information is available from Bill’s site:
www.billday.com


