Demo EngingTricks of the Trade

%

NVScene 2014

DEMOS = CREATIVITY + WORKAMN

What we need

* Improved workflows, more productivity
— Shorter turnaround times
— Quicker/more iterations
— Better end result

 Better Code

— Avoid over-engineering, reduce complexity
* Less and simpler code, more robust

— Better performance

Agenda

Code Complexity
Workflow: Iteration & Tweaking
DX11

Performance

COMPLEXITY

“Controlling complexity is the essence of
computer programming.”

- Brian Kernighan, Software Tools (1976)

The Golden Rule

e KISS: Keep It Simple & Stupid
* Avoid over-engineering, reduce complexity

,Debugging is twice as hard as writing a program in
the first place. So if you're as clever as you can be
when you write it, how will you ever debug it?”

- Brian Kernighan

How?

Focus on the task at hand
— Don‘t write over-general systems (,,| _might_ need this later”)

— Get the job done
* But this doesn‘t mean you should write sloppy/ugly code

Less code - reduced surface area / probability of bugs

Avoid overly complex, under-the-hood machinery (e.g. smart pointers)
Consider C instead of C++

Simple, robust code that works and solves the problem

— May not be fancy, super-general or OOP-guru-style

— But it will safe you next time you’re trying to finish your prod 15mins before
the deadline

* Sleep-deprived, noisy environment, rushing

WORKFLOW

Asset Hot-Reloading

* Huge productivity boost for tweaking/iterating:
— ,Live” shader editing while demo keeps running

— Modify texture in Photoshop, save, instant update in
engine

— Adjusting meshes / scenes on-the-fly

e Easily implemented
e ...yet few people actually do it!

Asset Hot-Reloading

* Some options:

— Text file containing list of filenames, reload all on keypress
* Pro: Doesn’t need to reload all assets
e Con: Need to manually update list of filenames

— Resource manager, periodic timestamp checks

— Full directory watcher using OS file notification
mechanisms

* Some amount work...

Example

Asset Hot-Reloading

Starting point:
A base class for all derived resource types

struct Resource
{
virtual void Create(void* data, UINT size) = 0;
char filename[256]; struct Texture : public Resource
time_t lastTime; // from <time.h> {
}; Texture() : tex(NULL) {}
~Texture();

void Create(void* data, UINT size);
// via D3DXCreateTextureFromFileInMemory etc.

IDirect3DBaseTexture9* tex;

Simple resource cache implementation

Resource* resources[256];
int numResources;

void LoadResource(Resource* resource, const char* filename) // private

{

void* data = NULL;
UINT size = 0;
struct _stat st;

if (_stat(filename, &st) == 0) {

memcpy(resource->filename, filename, strlen(filename)+1);

resource->JlastTime = st.st_mtime;

data = LoadFile(filename, size);

resource->Create(data, size);

resources[numresources++] =

delete[] data;

resource,

// pubTic
Texture* LoadTexture(const char* filename)
{
Texture* tex = new Texture;
LoadResource(tex, filename);
return tex;

Reloading

* Check timestamp of
each resource in list

— Every Nth tick in your
mainloop

— Every N ms
— Upon keypress

void ReloadResources()

{

}

void* data = NULL;
UINT size = 0;
struct _stat st;

for (int i=0; i < numResources; i++)
{
Resource* resource = resources[i];
if (_stat(resource->filename, &st) == 0) {
if (st.st_mtime != resource->lastTime) {
resource->lastTime = st.st_mtime;

data = LoadFile(filename, size);
resource->Create(data, size);

delete[] data;
}
}
}

Nice and easy.
But we can take the concept further...

On-the-fly Tweaking

e Can use the same concept for config files

— Keep effect variables in external text file, hot-
reload

e Console, telnet(!)

* Or just use the GNU Rocket System!! &

GNU Rocket System

* By Kusma & Skrebbel

 Standalone tool that
connects to your
demo via sockets API

* Tracker-like interface
for syncing / key-
framing

GNU Rocket System

* Download:

— rocket.sourceforge.net

— https://github.com/kusma/rocket
e Great tutorial by Gloom

— http://www.displayhack.org/2011/syncing-your-
real-time-graphics-right/

DX11

DX11 Resource Manhagement

e Compared to DX9 the DX11 API introduces a lot
of new objects to keep track of:

1. State objects for blending, rasterization, sampling,
etc.

2. Constant buffers everywhere
3. Vertex layouts are now more closely tied to shaders
* Need to pass shader blob to CreateInputLayout()
* Goal: Abstracting it away
— Avoid exposing all the details (create/release/etc.)

Constant Buffers

Simple manager

We can extend this
approach and
completely eliminate
cbuffer objects from
our engine’s API

— Just need
Map/Unmap-style
functions

std: :vector<ID3D1l1Buffer*> m_ConstantBuffercCache;

ID3D11Buffer* GetConstantBuffer(size_t sizeBytes)

{
D3D11_BUFFER_DESC chbDesc;

// first try to find already existing buffer with matching size
for (size_t i=0; i < m_ConstantBufferCache.size(); i++)
{
m_ConstantBuffercache[i]->GetDesc(&chDesc);
if (cbbDesc.Bytewidth == sizeBytes) return m_ConstantBuffercache[i];

}

// not found, we need to create a new one
cbbesc.Bytewidth sizeBytes;

cbbesc.Usage D3D11_USAGE_DYNAMIC;
cbbesc.BindFlags D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags D3D11_CPU_ACCESS_WRITE;
cbbesc.MiscFlags 0;
cbbesc.StructureByteStride = 0;

ID3D11Buffer* buffer = NULL;
HRESULT hr = gpu.m_d3dDevice->CreateBuffer(&cbbDesc, NULL, &buffer);

// add to cache
m_constantBuffercache.push_back (buffer);

return buffer;

Vertex Layouts

» Different shaders usually require different vertex formats / layouts
— 2nd UV set (lightmaps), Lighting: Normal/TS, Bone Weights/Indices, ...
e Solutions:

— Use a single (compressed) vertex format that contains everything

* Should be 32 bytes, adds decoding overhead to vertexshader
— Normals: DXGI_FORMAT_R8G8B8A8_SNORM, R10G10B10A2, 3 halfs, etc.
— Lightmap Uvs can use 2 shorts

— Use a small, fixed set of vertex formats
— Automatically create input layout directly from vertex shader code via

D3DReflect API

» Can iterate over all vertex elements and deduce their type/format from desc
* Implement a caching scheme by hashing the D3D11_INPUT_ELEMENT_DESC

PERFORMANCE

Boosting Performance

Every API call has a certain CPU cost in the driver

If you want to display a lot of (animated) objects you might quickly
run into trouble
* Debris, swarms, particles, etc.

Subject of lots of buzz recently
* That, Mental” API
* Bindless OpenGL — NVidia extensions

Two main approaches to reduce APl/driver overhead:

— Reduce # of API calls
* Example here: DX11 Constant Buffers

— Make draw calls do more stuff — Instancing

Example: DX11 Constant Buffers

* Tip: Don’t create lots of cbuffers!

— Referencing hundreds of different cbuffers per frame
can induce substantial overhead

— Only allocate one underlying D3D cbuffer per size
class
 Mapping (DISCARD) the same buffer 1000 times is much
faster than mapping 1000 different buffers

* More details: See ryg‘s blog at
http://fgiesen.wordpress.com/2013/03/05/mopping-up/

The Beauty of 90‘s GL: Display Lists

e Asold as the hills

e Super easy to use: glGenLists, gINewL1ist, lots of funky glvertex3f
immediate mode madness, g1EndList

e Just one API call perdraw! glcallList()
— Rivals VBO performance!
— Driver optimizes data heavily

* Additional advantages:

— Makes it easy to convert from facelist-based geometry data typically provided by DCC apps to GPU-
friendly vertex stream

DDC apps typically store a list of faces that reference vertex positions, normals, Uvs via indexing into separate
coordinate arrays (see also .OBJ)

With vertex buffers you usually need to untangle everything and duplicate vertex elements to yield a flat data stream
To prevent unnecessary vertex duplication, one has to implement a condensation/caching scheme

— Vertex data condensation might be handled by driver

Instancing

Main concept: Upload single mesh, single call renders it
multiple times according to data provided in separate vertex
stream

GL Instancing

VBO for mesh geometry as usual

Create a VBO with GL_ARRAY_BUFFER_ARB and
GL_DYNAMIC_DRAW_ARB that will be filled with instancing data

Declare attributes of per-instance data in vertex shader

Use glvertexAttribrPointer () and glvertexAttribbDivisor()
to Setup vertex streams

Map and update instance data buffer
Render everything in one go via glbrawelementsInstanced()

See also ,Instancing in OpenGL"” — Jari Komppa, available online:
http://sol.gfxile.net/instancing.html|

D3D Example: Momentous

 D3D10 version of the
particle system used in
"fr-059: momentum”

* Full source code at:
https://github.com/rygorous/momentous

Material System

The number of rendering modes and shading styles can quickly
lead to an exploding number of possible combinations

Ubershader concept can help to reduce/manage complexity

— But requires implementation of a shader cache system at a certain point
Brute force: Big, complex shaders where portions get filtered out
by setting black/white textures or color constants

— Can work well, if you just need a 3dsmax-like material concept
(i.e. shading model + a number of textures and colors to tweak)

Deferred Shading Overview

* Deferred Shading approaches are more flexible

— Write material values into framebuffer, plus XYZN (G-Buffer pass, MRT)
— Lighting pass for each light:
* Perform lighting computation for each pixel and add into accumulation buffer

— Final composition pass combines lighting values with material coeffs
and colors

Deferred Shading Buffers
an (Y

-

Position Normals Lighting, Shading

Images by Carsten ,Frenetic’ Dachsbacher

Deferred Shading: Challenges

Many (fullscreen) passes, fat RTs = Requires a lot of bandwidth

Most complexity is in lighting pass

— Diffuse/specular lighting model, attenuation, shadow mapping, etc.
So instead of running over all pixels of the framebuffer, you
want to only process pixels affected by the light

— Screen-space scissor rectangle

— Rendering geometry that approximates the bounding volume of the light
(sphere for omni)

— Marking affected pixels in the stencil buffer

Deferred Shading: KISS

» Justignore the all the fancy/complex stuff!

— Typical demos have few (1) light sources per scene
* Definitely not hundreds/thousands

* Implementing a basic version is rather easy

— Use world-space positions & normals
— Simple lighting pass

* No shadows

* No scissoring/stenciling optimizations

e Result: We get all the nice properties with minimum effort!

Thank you!

Questions?

References

Efficient Buffer Management - John McDonald (NVidia)

Beyond Porting: How Modern OpenGL can
Radically Reduce Driver Overhead
- Cass Everitt, John McDonald (NVidia)

OpenGL Performance Tuning
- Evan Hart (ATl), GDC 2006 [re display lists]

ATl OpenGL Programming and Optimization Guide
— [re display lists]

References

Inside Geometry Instancing — Francesco Carucci,
GPU Gems 2, available online (developer.nvidia.com)

Porting Soure to Linux
- Rich Geldreich (Valve), John McDonald (NVIDIA), GTC 2013

Various talks at GTC 2014!

