
Demo Engine Tricks of the Trade

Boosting Productivity & Performance,
Reducing Complexity

Armin Jahanpanah
spike / science

NVScene 2014

DEMOS = CREATIVITY + WORK^N

What we need
• Improved workflows, more productivity

– Shorter turnaround times
– Quicker/more iterations
– Better end result

• Better Code
– Avoid over-engineering, reduce complexity

• Less and simpler code, more robust

– Better performance

Agenda

• Code Complexity

• Workflow: Iteration & Tweaking

• DX11

• Performance

COMPLEXITY
Part 1:

“Controlling complexity is the essence of
computer programming.”

- Brian Kernighan, Software Tools (1976)

The Golden Rule
• KISS: Keep It Simple & Stupid
• Avoid over-engineering, reduce complexity

„Debugging is twice as hard as writing a program in
the first place. So if you're as clever as you can be
when you write it, how will you ever debug it?”

- Brian Kernighan

How?
• Focus on the task at hand

– Don‘t write over-general systems („I _might_ need this later“)
– Get the job done

• But this doesn‘t mean you should write sloppy/ugly code

• Less code → reduced surface area / probability of bugs
• Avoid overly complex, under-the-hood machinery (e.g. smart pointers)
• Consider C instead of C++
• Simple, robust code that works and solves the problem

– May not be fancy, super-general or OOP-guru-style
– But it will safe you next time you’re trying to finish your prod 15mins before

the deadline
• Sleep-deprived, noisy environment, rushing

WORKFLOW
Part 2:

Asset Hot-Reloading
• Huge productivity boost for tweaking/iterating:

– „Live“ shader editing while demo keeps running
– Modify texture in Photoshop, save, instant update in

engine
– Adjusting meshes / scenes on-the-fly
– …

• Easily implemented
• … yet few people actually do it!

Asset Hot-Reloading
• Some options:

– Text file containing list of filenames, reload all on keypress
• Pro: Doesn’t need to reload all assets
• Con: Need to manually update list of filenames

– Resource manager, periodic timestamp checks
– Full directory watcher using OS file notification

mechanisms
• Some amount work…

– …

Example

Asset Hot-Reloading

Starting point:
A base class for all derived resource types

struct Resource
{
 virtual void Create(void* data, UINT size) = 0;

 char filename[256];
 time_t lastTime; // from <time.h>
};

struct Texture : public Resource
{
 Texture() : tex(NULL) {}
 ~Texture();

 void Create(void* data, UINT size);
 // via D3DXCreateTextureFromFileInMemory etc.

 IDirect3DBaseTexture9* tex;
};

Simple resource cache implementation
Resource* resources[256];
int numResources;

void LoadResource(Resource* resource, const char* filename) // private
{
 void* data = NULL;
 UINT size = 0;
 struct _stat st;

 if (_stat(filename, &st) == 0) {
 memcpy(resource->filename, filename, strlen(filename)+1);
 resource->lastTime = st.st_mtime;

 data = LoadFile(filename, size);

 resource->Create(data, size);
 resources[numResources++] = resource;

 delete[] data;
 }
}

// public
Texture* LoadTexture(const char* filename)
{
 Texture* tex = new Texture;
 LoadResource(tex, filename);
 return tex;
}

Reloading

• Check timestamp of
each resource in list
– Every Nth tick in your

mainloop

– Every N ms

– Upon keypress

– …

void ReloadResources()
{
 void* data = NULL;
 UINT size = 0;
 struct _stat st;

 for (int i=0; i < numResources; i++)
 {
 Resource* resource = resources[i];
 if (_stat(resource->filename, &st) == 0) {
 if (st.st_mtime != resource->lastTime) {
 resource->lastTime = st.st_mtime;

 data = LoadFile(filename, size);

 resource->Create(data, size);

 delete[] data;
 }
 }
 }
}

Nice and easy.

But we can take the concept further…

• Can use the same concept for config files

– Keep effect variables in external text file, hot-
reload

• Console, telnet(!)

• Or just use the GNU Rocket System!!

On-the-fly Tweaking

GNU Rocket System

• By Kusma & Skrebbel

• Standalone tool that
connects to your
demo via sockets API

• Tracker-like interface
for syncing / key-
framing

GNU Rocket System

• Download:

– rocket.sourceforge.net

– https://github.com/kusma/rocket

• Great tutorial by Gloom

– http://www.displayhack.org/2011/syncing-your-
real-time-graphics-right/

DX11
Part 3:

DX11 Resource Management
• Compared to DX9 the DX11 API introduces a lot

of new objects to keep track of:
1. State objects for blending, rasterization, sampling,

etc.
2. Constant buffers everywhere
3. Vertex layouts are now more closely tied to shaders

• Need to pass shader blob to CreateInputLayout()

• Goal: Abstracting it away
– Avoid exposing all the details (create/release/etc.)

Constant Buffers
• Simple manager

• We can extend this
approach and
completely eliminate
cbuffer objects from
our engine‘s API
– Just need

Map/Unmap-style
functions

std::vector<ID3D11Buffer*> m_ConstantBufferCache;

ID3D11Buffer* GetConstantBuffer(size_t sizeBytes)
{
 D3D11_BUFFER_DESC cbDesc;

 // first try to find already existing buffer with matching size
 for (size_t i=0; i < m_ConstantBufferCache.size(); i++)
 {
 m_ConstantBufferCache[i]->GetDesc(&cbDesc);
 if (cbDesc.ByteWidth == sizeBytes) return m_ConstantBufferCache[i];
 }

 // not found, we need to create a new one
 cbDesc.ByteWidth = sizeBytes;
 cbDesc.Usage = D3D11_USAGE_DYNAMIC;
 cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
 cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
 cbDesc.MiscFlags = 0;
 cbDesc.StructureByteStride = 0;

 ID3D11Buffer* buffer = NULL;
 HRESULT hr = gpu.m_d3dDevice->CreateBuffer(&cbDesc, NULL, &buffer);

 // add to cache
 m_ConstantBufferCache.push_back(buffer);

 return buffer;
}

Vertex Layouts
• Different shaders usually require different vertex formats / layouts

– 2nd UV set (lightmaps), Lighting: Normal/TS, Bone Weights/Indices, …

• Solutions:
– Use a single (compressed) vertex format that contains everything

• Should be 32 bytes, adds decoding overhead to vertexshader
– Normals: DXGI_FORMAT_R8G8B8A8_SNORM, R10G10B10A2, 3 halfs, etc.
– Lightmap Uvs can use 2 shorts

– Use a small, fixed set of vertex formats
– Automatically create input layout directly from vertex shader code via

D3DReflect API
• Can iterate over all vertex elements and deduce their type/format from desc
• Implement a caching scheme by hashing the D3D11_INPUT_ELEMENT_DESC

PERFORMANCE
Part 4:

Boosting Performance
• Every API call has a certain CPU cost in the driver

• If you want to display a lot of (animated) objects you might quickly
run into trouble
• Debris, swarms, particles, etc.

• Subject of lots of buzz recently
• That „Mental“ API

• Bindless OpenGL – NVidia extensions

• Two main approaches to reduce API/driver overhead:
– Reduce # of API calls

• Example here: DX11 Constant Buffers

– Make draw calls do more stuff – Instancing

Example: DX11 Constant Buffers

• Tip: Don’t create lots of cbuffers!
– Referencing hundreds of different cbuffers per frame

can induce substantial overhead

– Only allocate one underlying D3D cbuffer per size
class
• Mapping (DISCARD) the same buffer 1000 times is much

faster than mapping 1000 different buffers

• More details: See ryg‘s blog at
http://fgiesen.wordpress.com/2013/03/05/mopping-up/

The Beauty of 90‘s GL: Display Lists
• As old as the hills
• Super easy to use: glGenLists, glNewList, lots of funky glVertex3f

immediate mode madness, glEndList
• Just one API call per draw! glCallList()

– Rivals VBO performance!
– Driver optimizes data heavily

• Additional advantages:
– Makes it easy to convert from facelist-based geometry data typically provided by DCC apps to GPU-

friendly vertex stream
• DDC apps typically store a list of faces that reference vertex positions, normals, Uvs via indexing into separate

coordinate arrays (see also .OBJ)
• With vertex buffers you usually need to untangle everything and duplicate vertex elements to yield a flat data stream
• To prevent unnecessary vertex duplication, one has to implement a condensation/caching scheme

– Vertex data condensation might be handled by driver

Instancing

Main concept: Upload single mesh, single call renders it
multiple times according to data provided in separate vertex

stream

GL Instancing
• VBO for mesh geometry as usual

• Create a VBO with GL_ARRAY_BUFFER_ARB and
GL_DYNAMIC_DRAW_ARB that will be filled with instancing data

• Declare attributes of per-instance data in vertex shader

• Use glVertexAttribPointer() and glVertexAttribDivisor()
to setup vertex streams

• Map and update instance data buffer

• Render everything in one go via glDrawElementsInstanced()
• See also „Instancing in OpenGL“ – Jari Komppa, available online:

http://sol.gfxile.net/instancing.html

D3D Example: Momentous

• D3D10 version of the
particle system used in
"fr-059: momentum"

• Full source code at:
https://github.com/rygorous/momentous

Material System
• The number of rendering modes and shading styles can quickly

lead to an exploding number of possible combinations

• Ubershader concept can help to reduce/manage complexity
– But requires implementation of a shader cache system at a certain point

• Brute force: Big, complex shaders where portions get filtered out
by setting black/white textures or color constants
– Can work well, if you just need a 3dsmax-like material concept

(i.e. shading model + a number of textures and colors to tweak)

Deferred Shading Overview

• Deferred Shading approaches are more flexible
– Write material values into framebuffer, plus XYZN (G-Buffer pass, MRT)

– Lighting pass for each light:
• Perform lighting computation for each pixel and add into accumulation buffer

– Final composition pass combines lighting values with material coeffs
and colors

Deferred Shading Buffers

Images by Carsten ‚Frenetic‘ Dachsbacher

Position Normals Lighting, Shading

Deferred Shading: Challenges

• Many (fullscreen) passes, fat RTs  Requires a lot of bandwidth

• Most complexity is in lighting pass
– Diffuse/specular lighting model, attenuation, shadow mapping, etc.

• So instead of running over all pixels of the framebuffer, you
want to only process pixels affected by the light
– Screen-space scissor rectangle

– Rendering geometry that approximates the bounding volume of the light
(sphere for omni)

– Marking affected pixels in the stencil buffer

Deferred Shading: KISS

• Just ignore the all the fancy/complex stuff!

– Typical demos have few (1) light sources per scene
• Definitely not hundreds/thousands

• Implementing a basic version is rather easy
– Use world-space positions & normals

– Simple lighting pass
• No shadows

• No scissoring/stenciling optimizations

• Result: We get all the nice properties with minimum effort!

Thank you!

Questions?

References
• Efficient Buffer Management - John McDonald (NVidia)

• Beyond Porting: How Modern OpenGL can
Radically Reduce Driver Overhead
- Cass Everitt, John McDonald (NVidia)

• OpenGL Performance Tuning
- Evan Hart (ATI), GDC 2006 [re display lists]

• ATI OpenGL Programming and Optimization Guide
– [re display lists]

References

• Inside Geometry Instancing – Francesco Carucci,

GPU Gems 2, available online (developer.nvidia.com)

• Porting Soure to Linux
- Rich Geldreich (Valve), John McDonald (NVIDIA), GTC 2013

• Various talks at GTC 2014!

